Copied to
clipboard

G = C62.11C23order 288 = 25·32

6th non-split extension by C62 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.11C23, (S3×C12)⋊2C4, Dic3210C2, C12.93(C4×S3), C4⋊Dic316S3, (C4×S3)⋊1Dic3, C6.2(C4○D12), (C2×C12).125D6, D6⋊Dic3.8C2, D6.4(C2×Dic3), C4.15(S3×Dic3), (C6×C12).85C22, C6.2(Q83S3), (C2×Dic3).53D6, C12.18(C2×Dic3), (C22×S3).58D6, C12⋊Dic315C2, C6.13(D42S3), C2.1(D125S3), C6.6(C22×Dic3), Dic3.9(C2×Dic3), C323(C42⋊C2), C2.2(D6.6D6), C32(C23.26D6), (C6×Dic3).51C22, (C2×C4).69S32, (S3×C2×C4).2S3, C6.86(S3×C2×C4), (S3×C2×C12).5C2, C2.8(C2×S3×Dic3), (C3×C4⋊Dic3)⋊4C2, C22.18(C2×S32), C35(C4⋊C47S3), (S3×C6).18(C2×C4), (C3×C12).60(C2×C4), (C3×C6).2(C4○D4), (S3×C2×C6).68C22, (C3×C6).46(C22×C4), (C2×C6).30(C22×S3), (C3×Dic3).25(C2×C4), (C2×C3⋊Dic3).13C22, SmallGroup(288,489)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C62.11C23
C1C3C32C3×C6C62C6×Dic3Dic32 — C62.11C23
C32C3×C6 — C62.11C23
C1C22C2×C4

Generators and relations for C62.11C23
 G = < a,b,c,d,e | a6=b6=1, c2=b3, d2=e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece-1=a3c, de=ed >

Subgroups: 490 in 165 conjugacy classes, 68 normal (34 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C3×S3, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×C6, C42⋊C2, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C62, C4×Dic3, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C6.D4, C3×C4⋊C4, S3×C2×C4, C22×C12, S3×C12, C6×Dic3, C6×Dic3, C2×C3⋊Dic3, C6×C12, S3×C2×C6, C4⋊C47S3, C23.26D6, Dic32, D6⋊Dic3, C3×C4⋊Dic3, C12⋊Dic3, S3×C2×C12, C62.11C23
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C4○D4, C4×S3, C2×Dic3, C22×S3, C42⋊C2, S32, S3×C2×C4, C4○D12, D42S3, Q83S3, C22×Dic3, S3×Dic3, C2×S32, C4⋊C47S3, C23.26D6, D125S3, D6.6D6, C2×S3×Dic3, C62.11C23

Smallest permutation representation of C62.11C23
On 96 points
Generators in S96
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 93 11 91 9 95)(8 94 12 92 10 96)(19 28 23 26 21 30)(20 29 24 27 22 25)(31 42 33 38 35 40)(32 37 34 39 36 41)(43 49 45 51 47 53)(44 50 46 52 48 54)(55 61 57 63 59 65)(56 62 58 64 60 66)(67 78 69 74 71 76)(68 73 70 75 72 77)(79 88 83 86 81 90)(80 89 84 87 82 85)
(1 64 16 56)(2 65 17 57)(3 66 18 58)(4 61 13 59)(5 62 14 60)(6 63 15 55)(7 51 91 43)(8 52 92 44)(9 53 93 45)(10 54 94 46)(11 49 95 47)(12 50 96 48)(19 74 26 67)(20 75 27 68)(21 76 28 69)(22 77 29 70)(23 78 30 71)(24 73 25 72)(31 86 38 79)(32 87 39 80)(33 88 40 81)(34 89 41 82)(35 90 42 83)(36 85 37 84)
(1 31 4 34)(2 36 5 33)(3 35 6 32)(7 78 10 75)(8 77 11 74)(9 76 12 73)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)(25 53 28 50)(26 52 29 49)(27 51 30 54)(55 80 58 83)(56 79 59 82)(57 84 60 81)(61 89 64 86)(62 88 65 85)(63 87 66 90)(67 92 70 95)(68 91 71 94)(69 96 72 93)
(1 23 4 20)(2 24 5 21)(3 19 6 22)(7 89 10 86)(8 90 11 87)(9 85 12 88)(13 27 16 30)(14 28 17 25)(15 29 18 26)(31 46 34 43)(32 47 35 44)(33 48 36 45)(37 53 40 50)(38 54 41 51)(39 49 42 52)(55 67 58 70)(56 68 59 71)(57 69 60 72)(61 78 64 75)(62 73 65 76)(63 74 66 77)(79 91 82 94)(80 92 83 95)(81 93 84 96)

G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,64,16,56)(2,65,17,57)(3,66,18,58)(4,61,13,59)(5,62,14,60)(6,63,15,55)(7,51,91,43)(8,52,92,44)(9,53,93,45)(10,54,94,46)(11,49,95,47)(12,50,96,48)(19,74,26,67)(20,75,27,68)(21,76,28,69)(22,77,29,70)(23,78,30,71)(24,73,25,72)(31,86,38,79)(32,87,39,80)(33,88,40,81)(34,89,41,82)(35,90,42,83)(36,85,37,84), (1,31,4,34)(2,36,5,33)(3,35,6,32)(7,78,10,75)(8,77,11,74)(9,76,12,73)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45)(25,53,28,50)(26,52,29,49)(27,51,30,54)(55,80,58,83)(56,79,59,82)(57,84,60,81)(61,89,64,86)(62,88,65,85)(63,87,66,90)(67,92,70,95)(68,91,71,94)(69,96,72,93), (1,23,4,20)(2,24,5,21)(3,19,6,22)(7,89,10,86)(8,90,11,87)(9,85,12,88)(13,27,16,30)(14,28,17,25)(15,29,18,26)(31,46,34,43)(32,47,35,44)(33,48,36,45)(37,53,40,50)(38,54,41,51)(39,49,42,52)(55,67,58,70)(56,68,59,71)(57,69,60,72)(61,78,64,75)(62,73,65,76)(63,74,66,77)(79,91,82,94)(80,92,83,95)(81,93,84,96)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,64,16,56)(2,65,17,57)(3,66,18,58)(4,61,13,59)(5,62,14,60)(6,63,15,55)(7,51,91,43)(8,52,92,44)(9,53,93,45)(10,54,94,46)(11,49,95,47)(12,50,96,48)(19,74,26,67)(20,75,27,68)(21,76,28,69)(22,77,29,70)(23,78,30,71)(24,73,25,72)(31,86,38,79)(32,87,39,80)(33,88,40,81)(34,89,41,82)(35,90,42,83)(36,85,37,84), (1,31,4,34)(2,36,5,33)(3,35,6,32)(7,78,10,75)(8,77,11,74)(9,76,12,73)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45)(25,53,28,50)(26,52,29,49)(27,51,30,54)(55,80,58,83)(56,79,59,82)(57,84,60,81)(61,89,64,86)(62,88,65,85)(63,87,66,90)(67,92,70,95)(68,91,71,94)(69,96,72,93), (1,23,4,20)(2,24,5,21)(3,19,6,22)(7,89,10,86)(8,90,11,87)(9,85,12,88)(13,27,16,30)(14,28,17,25)(15,29,18,26)(31,46,34,43)(32,47,35,44)(33,48,36,45)(37,53,40,50)(38,54,41,51)(39,49,42,52)(55,67,58,70)(56,68,59,71)(57,69,60,72)(61,78,64,75)(62,73,65,76)(63,74,66,77)(79,91,82,94)(80,92,83,95)(81,93,84,96) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,93,11,91,9,95),(8,94,12,92,10,96),(19,28,23,26,21,30),(20,29,24,27,22,25),(31,42,33,38,35,40),(32,37,34,39,36,41),(43,49,45,51,47,53),(44,50,46,52,48,54),(55,61,57,63,59,65),(56,62,58,64,60,66),(67,78,69,74,71,76),(68,73,70,75,72,77),(79,88,83,86,81,90),(80,89,84,87,82,85)], [(1,64,16,56),(2,65,17,57),(3,66,18,58),(4,61,13,59),(5,62,14,60),(6,63,15,55),(7,51,91,43),(8,52,92,44),(9,53,93,45),(10,54,94,46),(11,49,95,47),(12,50,96,48),(19,74,26,67),(20,75,27,68),(21,76,28,69),(22,77,29,70),(23,78,30,71),(24,73,25,72),(31,86,38,79),(32,87,39,80),(33,88,40,81),(34,89,41,82),(35,90,42,83),(36,85,37,84)], [(1,31,4,34),(2,36,5,33),(3,35,6,32),(7,78,10,75),(8,77,11,74),(9,76,12,73),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45),(25,53,28,50),(26,52,29,49),(27,51,30,54),(55,80,58,83),(56,79,59,82),(57,84,60,81),(61,89,64,86),(62,88,65,85),(63,87,66,90),(67,92,70,95),(68,91,71,94),(69,96,72,93)], [(1,23,4,20),(2,24,5,21),(3,19,6,22),(7,89,10,86),(8,90,11,87),(9,85,12,88),(13,27,16,30),(14,28,17,25),(15,29,18,26),(31,46,34,43),(32,47,35,44),(33,48,36,45),(37,53,40,50),(38,54,41,51),(39,49,42,52),(55,67,58,70),(56,68,59,71),(57,69,60,72),(61,78,64,75),(62,73,65,76),(63,74,66,77),(79,91,82,94),(80,92,83,95),(81,93,84,96)]])

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D4E4F4G4H4I4J4K4L4M4N6A···6F6G6H6I6J6K6L6M12A12B12C12D12E···12J12K12L12M12N12O12P12Q12R
order122222333444444444444446···666666661212121212···121212121212121212
size1111662242233336666181818182···2444666622224···4666612121212

54 irreducible representations

dim11111112222222224444444
type++++++++-++++-+-+-+
imageC1C2C2C2C2C2C4S3S3Dic3D6D6D6C4○D4C4×S3C4○D12S32D42S3Q83S3S3×Dic3C2×S32D125S3D6.6D6
kernelC62.11C23Dic32D6⋊Dic3C3×C4⋊Dic3C12⋊Dic3S3×C2×C12S3×C12C4⋊Dic3S3×C2×C4C4×S3C2×Dic3C2×C12C22×S3C3×C6C12C6C2×C4C6C6C4C22C2C2
# reps12211181143214481112122

Matrix representation of C62.11C23 in GL6(𝔽13)

1200000
0120000
001000
000100
000001
00001212
,
1200000
0120000
0001200
001100
000010
000001
,
1240000
610000
008000
005500
000010
000001
,
500000
050000
001000
000100
000010
00001212
,
1230000
810000
001000
000100
000010
000001

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,6,0,0,0,0,4,1,0,0,0,0,0,0,8,5,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,0,0,0,12],[12,8,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C62.11C23 in GAP, Magma, Sage, TeX

C_6^2._{11}C_2^3
% in TeX

G:=Group("C6^2.11C2^3");
// GroupNames label

G:=SmallGroup(288,489);
// by ID

G=gap.SmallGroup(288,489);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,64,254,58,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=1,c^2=b^3,d^2=e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^3*c,d*e=e*d>;
// generators/relations

׿
×
𝔽